TrNews: Heterogeneous User-Interest Transfer Learning for News Recommendation

Guangneng Hu, Qiang Yang

Information Extraction and Text Mining Long paper Paper

Gather-1A: Apr 21, Gather-1A: Apr 21 (13:00-15:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in separate windows.

Abstract: We investigate how to solve the cross-corpus news recommendation for unseen users in the future. This is a problem where traditional content-based recommendation techniques often fail. Luckily, in real-world recommendation services, some publisher (e.g., Daily news) may have accumulated a large corpus with lots of consumers which can be used for a newly deployed publisher (e.g., Political news). To take advantage of the existing corpus, we propose a transfer learning model (dubbed as TrNews) for news recommendation to transfer the knowledge from a source corpus to a target corpus. To tackle the heterogeneity of different user interests and of different word distributions across corpora, we design a translator-based transfer-learning strategy to learn a representation mapping between source and target corpora. The learned translator can be used to generate representations for unseen users in the future. We show through experiments on real-world datasets that TrNews is better than various baselines in terms of four metrics. We also show that our translator is effective among existing transfer strategies.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EACL2021

Similar Papers

Cross-lingual Contextualized Topic Models with Zero-shot Learning
Federico Bianchi, Silvia Terragni, Dirk Hovy, Debora Nozza, Elisabetta Fersini,
Informative and Controllable Opinion Summarization
Reinald Kim Amplayo, Mirella Lapata,
DOCENT: Learning Self-Supervised Entity Representations from Large Document Collections
Yury Zemlyanskiy, Sudeep Gandhe, Ruining He, Bhargav Kanagal, Anirudh Ravula, Juraj Gottweis, Fei Sha, Ilya Eckstein,