Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification

Soumya Chatterjee, Ayush Maheshwari, Ganesh Ramakrishnan, Saketha Nath Jagaralpudi

Machine Learning for NLP Long paper Paper

Gather-2D: Apr 22, Gather-2D: Apr 22 (13:00-15:00 UTC) [Join Gather Meeting]

You can open the pre-recorded video in separate windows.

Abstract: We consider the problem of multi-label classification, where the labels lie on a hierarchy. However, unlike most existing works in hierarchical multi-label classification, we do not assume that the label-hierarchy is known. Encouraged by the recent success of hyperbolic embeddings in capturing hierarchical relations, we propose to jointly learn the classifier parameters as well as the label embeddings. Such a joint learning is expected to provide a twofold advantage: i) the classifier generalises better as it leverages the prior knowledge of existence of a hierarchy over the labels, and ii) in addition to the label co-occurrence information, the label-embedding may benefit from the manifold structure of the input datapoints, leading to embeddings that are more faithful to the label hierarchy. We propose a novel formulation for the joint learning and empirically evaluate its efficacy. The results show that the joint learning improves over the baseline that employs label co-occurrence based pre-trained hyperbolic embeddings. Moreover, the proposed classifiers achieve state-of-the-art generalization on standard benchmarks. We also present evaluation of the hyperbolic embeddings obtained by joint learning and show that they represent the hierarchy more accurately than the other alternatives.
NOTE: Video may display a random order of authors. Correct author list is at the top of this page.

Connected Papers in EACL2021

Similar Papers

Computationally Efficient Wasserstein Loss for Structured Labels
Ayato Toyokuni, Sho Yokoi, Hisashi Kashima, Makoto Yamada,
RelWalk - A Latent Variable Model Approach to Knowledge Graph Embedding
Danushka Bollegala, Huda Hakami, Yuichi Yoshida, Ken-ichi Kawarabayashi,